Contents

1 Modelling, Identification and Control of a Micro-cantilever Array 2
 1.1 Modelling and Identification of a Cantilever Array 2
 1.1.1 Geometry of the Problem ... 3
 1.1.2 Two-Scale Approximation ... 3
 1.1.3 Model Description ... 4
 1.1.4 Structure of Eigenmodes ... 5
 1.1.5 Model Validation ... 5
 1.1.6 Model Identification ... 6
 1.2 Semi-Decentralized Approximation of an Optimal Control applied to a Cantilever Array 9
 1.2.1 General Notations ... 10
 1.2.2 Reformulation of the Two-Scale Model of Cantilever Arrays 10
 1.2.3 Model Reformulation ... 11
 1.2.4 Classical Formulation of the LQR Problem .. 12
 1.2.5 Semi-Decentralized Approximation ... 12
 1.2.6 Numerical Validation ... 15
 1.3 Simulation of Large-Scale Periodic Circuits by a Homogenization Method 17
 1.3.1 Linear Static Periodic Circuits .. 17
 1.3.2 Circuit Equations .. 18
 1.3.3 Direct Two–scale Transform T_E ... 19
 1.3.4 Inverse Two–scale Transform T_F^{-1} .. 19
 1.3.5 Two-scale transform T_N ... 20
 1.3.6 Behavior of “Spread” Analog Circuits ... 20
 1.3.7 Cell Equations (Problem Micro) .. 21
 1.3.8 Reformulation of the Problem Micro .. 23
 1.3.9 Homogenized Circuit Equations (Problem Macro) 23
 1.3.10 Computation of Actual Voltages and Currents 24
 1.3.11 Appendices ... 25
Chapter 1

Modelling, Identification and Control of a Micro-cantilever Array

by Scott COGAN, Hui HUI, Michel LENCZNER, Emmanuel PILLET, Nicolas RATIER, and Y. YAKOUBI

Since its invention by G. Binnig [3], the Atomic Force Microscope (AFM) has opened up new possibilities for a number of operations at a nanoscale level, having an impact across various sciences and technologies. Today, the most popular application of it (AFM) is in the material sciences, biology and fundamental physics, see the reviews of F. Giessibl [14], D. Drakova [12] and R. Garcia and R. Perez [13] among others. The AFM is also used for the manipulation of an object or materials at the nanoscale, for example the parallel Lithography of Quantum Devices [17], [5], investigations into mechanical interactions at the molecular level in biology [6], [29], [23], manipulation of nano-objects [10], [24] and data storage [20], [11], [18], [28], [16], [26] to cite only few of them. A number of research laboratories are now developing large AFM Arrays which can achieve the same kind of task in parallel. The most advanced system is the Millipede from IBM [11] for data storage, but again, a number of new architectures are emerging, see [20], [11], [18], [17], [28], [16], [26], [4], [15], [25].

We are currently developing tools for modelling, identification and control of micro-cantilever arrays like those encountered in Atomic Force Microscope Arrays. In this chapter we report results in this direction. The thread of our approach is to provide light computational methods for complex systems. This concern modelling as well as control. Our mechanical structure model is based on a specific multi-scale technique. For control, we start with a general theory of optimal control applied to our simple cantilever array model and we provide an approximation of the control law which may be implemented on a semi-decentralized computing architecture. In particular it could be implemented under the form of a periodically distributed analog electronic circuit. Even if this implementation remains to be completed, we present in advance a general model of such periodically distributed electronic circuits. It will be applied to fast simulations of electronic circuits realizing our control approximation. The general model has been derived with a modified form of the multi-scale technique used for mechanical structures. In a near future, we intend to couple both multi-scale models so that to run light simulations for matrices of electro-mechanical systems. Associated to our light models we also develop a variety of useful identification tools allowing global sensitivity analysis (GSA), deterministic updating and inverse identification by Monte Carlo simulation. We take advantage of the lightness of our AFM model to perform very quick GSA and Monte Carlo simulation, methods which are generally time consuming.

1.1 Modelling and Identification of a Cantilever Array

We present a simplified model of mechanical behavior of large cantilever arrays with discoupled rows in the dynamic operating regime. Since the supporting bases are assumed to be elastic, cross-talk effect between cantilevers is taken into account. The mathematical derivation combines a thin plate asymptotic theory and the two-scale approximation theory, devoted to strongly heterogeneous periodic systems. The model is not standard, so we present some of its features. We explain how each eigenmode is decomposed into a products of a base mode with a cantilever mode. We explain the method used for its discretization, and report results of its numerical validation with full three-dimensional Finite Element simulations. We also perform a GSA on the proposed model. Before any parametric identification, this GSA is a necessary step to discard uninfluential model parameters. The results of a deterministic and stochastic identification are finally presented. The first one is a dynamics model updating based on eigenelements sensitivities. The second one is based on Bayesian inference.
1.1.1 Geometry of the Problem

We consider a two-dimensional array of cantilevers. It is comprised of rectangle parallelepiped bases crossing the array in which rectangle parallelepiped cantilevers are clamped. Bases are supposed to be connected in the x_1-direction only, so that the system behaves as a set of decoupled rows. Each of them is clamped at its ends. Concerning the other ends, we report two cases, one for free cantilevers and one for cantilevers equipped with a rigid tip, as in Atomic Force Microscopes. The whole array is a periodic repetition of a same cell, in the two directions x_1 and x_2, see Figure 1.1 (a). We suppose that the number of columns and of rows of the array are sufficiently large, namely larger or equal to 10. Then, we introduce the small parameter ε^* equals to the inverse $1/N$ of the number of cantilevers in a row. We underline the fact that the technique presented in the rest of the paper can be extended to other geometries of cantilever arrays and even to other classes of microsystem arrays.

1.1.2 Two-Scale Approximation

Each point of the three-dimensional space, with coordinates $x = (x_1, x_2, x_3)$, is decomposed as $x = x^c + \varepsilon y$, where x^c represents the coordinates of the center of the cell to which x belongs, $\varepsilon = \begin{pmatrix} \varepsilon^* & 0 & 0 \\ 0 & \varepsilon^* & 0 \\ 0 & 0 & 1 \end{pmatrix}$, and $y = \varepsilon^{-1}(x - x^c)$ is the dilated relative position of x with respect to x^c. Points with coordinates y vary in the so-called reference cell, see the two-dimensional view on Figure 1.1 (b), that is obtained through a translation and the (x_1, x_2)—dilatation ε^{-1} of any current cell in the array.

We consider the distributed field $u(x)$, of elastic deflections in the array, and we introduce its two-scale transform,

$$\hat{u}^\varepsilon(\tilde{x}, y) = u(x^c + \varepsilon y),$$

for any $x = x^c + \varepsilon y$ and $\tilde{x} = (x_1, x_2)$. By construction, the two-scale transform is constant, with respect to its first variable \tilde{x}, over each cell. Since it depends on the ratio ε^*, then it may be approximated by the asymptotic field, denoted by u^0, obtained for large number of cells (in both x_1 and x_2-directions) or equivalently when ε^* approaches (mathematically) 0:

$$\hat{u}^\varepsilon = u^0 + O(\varepsilon^*).$$

The approximation u^0 is called the two-scale approximation of u. We mention that, as a consequence of the asymptotic process, the partial function $\tilde{x} \mapsto u^0(\tilde{x}, \cdot)$ is continuous instead of being piecewise constant.

Next, we consider that the field of elastic deflections u is a solution of the Love-Kirchhoff thin elastic plate equation in the whole mechanical structure, including bases and cantilevers. Furthermore, we assume that the ratio of cantilever thickness h_C to base thickness h_B is very small, namely

$$\frac{h_C}{h_B} \approx \varepsilon^{4/3}.$$ \hfill (1.1)

This assumption is formulated so that the ratio of cantilever stiffness to base stiffness be very small, namely of the order of $\varepsilon^{4/3}$. The asymptotic analysis when ε^* vanishes shows that u^0 does not depend on the cell variable y in bases and so depends only on the spatial variable \tilde{x}.

Next, we remark that $u^0(\tilde{x}, y)$ is a two-scale field, and therefore cannot be directly used as an approximation of the field $u(x)$ in the actual array of cantilevers. So, an inverse two-scale transform is to be applied to u^0. However, we remark
that $\tilde{x} \mapsto u^0(\tilde{x},y)$ is continuous, and so u^0 does not belong to the range of the two-scale transform operator and it has no preimage. Hence we introduce an approximated inverse of the two-scale transform, $v(\tilde{x},y) \mapsto \tilde{v}(x,y)$, in the sense that for any sufficiently regular one-scale function $u(x)$ and two-scale function $v(\tilde{x},y)$,

$$\tilde{u} = u + O(\varepsilon^*)$$

and

$$\tilde{v} = v + O(\varepsilon^*).$$

It turns out that $\tilde{v}(x)$ is a mean over the cell including x with respect to $\tilde{x} = (x_1, x_2)$ when x belongs to a cantilever

$$\tilde{v}(x) = \langle v(\cdot, \varepsilon^{-1}(x-x')) \rangle_{\tilde{x}},$$

and with respect to x_2 when x belongs to a base

$$\tilde{v}(x) = \langle v(\cdot, \varepsilon^{-1}(x-x')) \rangle_{x_2}.$$

In total, we retain \tilde{u}^0 as an approximation of u in the actual physical system. Note that for the model in dynamics, the deflection $u(t,x)$ is a time-space function. In our analysis we do not introduce a two-scale transformation in time, so the time variable t acts as a simple parameter.

1.1.3 Model Description

Now, we describe the model satisfied by the two-scale approximation $u^0(t,\tilde{x},y)$ of $u(t,x)$. Remark that as the deflection in the Kirchhoff-Love model, u is independent of x_3, thus u^0 is independent of y_3. For further simplicity, we neglect torsions effect i.e. the variations of $y_1 \mapsto u^0(t,\tilde{x},y)$ in cantilevers. Cantilever motion is governed by a classical Euler-Bernoulli beam equation, in the microscopic variable y_2,

$$m^c \partial_t u^0 + E^c \partial_{y_2}^4 y_2 u^0 = f^c$$

with $r^c = \varepsilon^d E^c f^c$, where m^c is a linear mass, E^c the cantilever elastic modulus, l^c the second moment of cantilever section, and f^c a load per unit length in the cantilever. This model represents motion of an infinite number of cantilevers parameterized by all $\tilde{x} = (x_1, x_2)$.

Bases are also governed by an Euler-Bernoulli equation, in the macroscopic variable x_1, where part of loads comes from continuous distributions of cantilever shear forces,

$$m^b \partial_t u^0 + E^b \partial_{y_3}^4 y_3 u^0 = -d^b \partial_{y_3}^3 y_3 u^0 + f^b$$

with $r^b = E^b l^b$, where m^b, E^b, l^b, d^b and f^b are a linear mass, the base elastic modulus, the second moment of section of the base, a cantilever-base coupling coefficient and the load per unit length in the base.

In the model, cantilevers appear as clamped in bases. So at base-cantilever junctions,

$$u^0_{\text{cantilever}} = u^0_{\text{base}} \quad \text{and} \quad (\partial_{y_2} u^0)_{\text{cantilever}} = 0,$$ \hspace{1cm} (1.2)

because $\partial_{y_2} u^0 = 0$ in bases. Other cantilever ends may be free, with equations,

$$\partial_{y_2}^2 u^0 = \partial_{y_3}^2 y_3 u^0 = 0,$$ \hspace{1cm} (1.3)

or may be equipped with a rigid part (usually a tip in Atomic Force Microscopes), so their equation are

$$J^R \partial_t \left(\begin{array}{c} u^0 \\ \partial_{y_2} u^0 \end{array} \right) + \varepsilon f^c \left(\begin{array}{c} -\partial_{y_3} y_3 u^0 \\ \partial_{y_2}^2 y_3 u^0 \end{array} \right) = \left(\begin{array}{c} f^c_3 \\ F^S_3 \end{array} \right)$$

at junctions between elastic parts and rigid parts. Here, J^R is a matrix of moments of the rigid part about the junction-plane, f^c_3 is a load in the y_3 direction, F^S_3 is a first moment of loads about the junction-plane, and F^S_2 the first moment of loads in the y_2 direction about the beam neutral plane. Finally, base ends are assumed to be clamped in a fixed support,

$$u^0 = \partial_{y_2} u^0 = 0.$$ \hspace{1cm} (1.4)

The loads f^c, f^b and f^R in the model are asymptotic loads which are generally not defined from the physical problem. In practical computations, they are replaced by the two-scale transforms f^c, f^b and f^R. To be complete, we mention that rows of cantilevers are discoupled, this is why x_2 plays only the role of a parameter.
1.1.4 Structure of Eigenmodes

There is an infinite number of eigenvalues λ^A and eigenvectors $\varphi^A(x_1, y_2)$ associated to the model. For convenience, we parameterize them by two independent indices i and j, both varying in the infinite countable set \mathbb{N}. The first indice i refers to the infinite set of eigenvalues λ^B_i and eigenvectors $\varphi^B_i(x_1)$ of the Euler-Bernoulli beam equation associated to a base. The eigenvalues $(\lambda^B_i)_{i \in \mathbb{N}}$ constitutes a sequence of positive number increasing towards infinity. At each such eigenvalue corresponds another eigenvalue problem associated to cantilevers, which has also a countable infinity of solutions denoted by λ^C_{ij} and $\varphi^C_{ij}(y_2)$. The index i of λ^B_i being fixed, the sequence $(\lambda^C_{ij})_{j \in \mathbb{N}}$ is a positive sequence increasing towards infinity. In the other side, for fixed j and large λ^B_i, i.e. large i, the sequence $(\lambda^C_{ij}, \varphi^C_{ij})_{i \in \mathbb{N}}$ converges to an eigenelement of the clamped-free cantilever model. The eigenvalues λ^A_{ij} of the model are proportional to λ^C_{ij}. Finally, each eigenvector $\varphi^A_{ij}(x_1, y_2)$ is the product of a mode in a base by a mode in a cantilever $\varphi^B_i(x_1)\varphi^C_{ij}(y_2)$.

1.1.5 Model Validation

We report observations made on eigenmode computations. We consider a one-dimensional silicon array of N cantilevers ($N = 10$, 15 or 20), with base dimensions $500\, \mu m \times 16.7\, \mu m \times 10\, \mu m$, and cantilever dimensions $41.7\, \mu m \times 12.5\, \mu m \times 1.25\, \mu m$, see Figure 1.2 for the two possible geometries, with or without tips. We have carried out our numerical study on both cases, but we limit the following comparisons to cantilevers without tips, because configuration including tips yields comparable results.

We restrict our attention to a finite number n^B of eigenvalues λ^B_i in the base. Computing the eigenvalues λ^A_i, we observe that they are grouped in bunches of size n^B accumulated around a clamped-free cantilever eigenvalues. A number of eigenvalues are isolated far from the bunches. It is remarkable that the eigenelements in a same bunch share a same cantilever mode shape, (close to a clamped-free cantilever mode) even if they correspond to different indices j. This is why, these modes will be called "cantilever modes". Isolated eigenelements share also a common cantilever shape, which looks like a first clamped-free cantilever mode shape excepted that the clamped side is shifted far from zero. The induced global mode φ^A is then dominated by base deformations and therefore will be called "base modes". Densities of square root of eigenvalues are reported in the sub-figures 2, 4 and 61 of Figure 1.3 for $n_B = 10$, 15 and 20 respectively. These

1Sub-figures are counted from top to down.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1_2.png}
\caption{Cantilever Array with tips (a) and without tips (b)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1_3.png}
\caption{Eigenmode Density Distributions for Finite Element Model and for the Two-Scale Model}
\end{figure}
figures show three bunches with size n_B and isolated modes that remain unchanged.

We discuss the comparison with the modal structure of the three-dimensional linear elasticity system for the cantilever array discretized by a standard finite element procedure. The eigenvalues of the three-dimensional elasticity equations constitute also an increasing positive sequence that accumulate at infinity. As for the two-scale model, its density distribution exhibits a number of concentration points and also some isolated values. Here bunch sizes equal the number N of cantilevers, see sub-figures 1, 3 and 5 in Figure 1.3 representing eigenmode distributions for $N = 10$, 15 and 20. Extrapolating this observation shows that when the number of cantilevers increases to infinity bunch size increases proportionally. Since the two-scale model is an approximation in the sense of an infinitely large number of cantilevers, this explains why the two-scale model spectrum exhibit mode concentration with infinite number of elements. This remark provides guidelines for operating mode selection in the two-scale model. In order to determine an approximation of the spectrum for an N-cantilevers array, we suggest to operate a truncation in the mode list so that to retain a simple infinity of eigenvalues $(\lambda^A_{ij})_{i=1}^{N}$ and $j \in [N]$. We stress the fact that N—eigenvalue bunches are generally not corresponding to a single column of the truncated matrix λ^A_{ij}. This comes from the base mode distribution in this list. When considered in increasing order, base modes are located in consecutive lines of the matrix λ^A but not necessary in a same column. We remark that a number of eigenvalues in the Finite Element model spectrum have not their counterpart in the two-scale model spectrum. The missing elements correspond to physical effects not taken into account in the Euler-Bernoulli models for bases and cantilevers.

The next step in the discussion is to compare the eigenmodes and especially those belonging to bunches of eigenvalues. To compare an eigenvector from the two-scale model with an eigenvector of the elasticity system, we use the Modal Assurance Criterion, see [2] which is equal to one when the shapes are identical and to zero when they are orthogonal, see Figure 1.5. We compare some eigenmodes which have MAC value near to 1, see Figure 1.6. This test has been applied on transverse displacement only and a further selection has been developed so that to eliminate modes corresponding to physical effects not modeled by the Euler-Bernoulli models. Following this procedure, mode pairing is achieved successfully. In Figure 1.4 (a) paired eigenvalues have been represented and the corresponding relative errors are plotted on Figure 1.4 (b). Note that errors are far from being uniform among eigenvalues. In fact, the main error source resides in a poor precision of the Euler-Bernoulli model for representing base deformations in few particular cases. Indeed, a careful observation of Finite Element modes shows that base torsion is predominant for some modes. This is especially true for the first mode of the first cantilever mode bunch.

1.1.6 Model Identification

Global Sensitivity Analysis (GSA)

GSA has the objective of studying the effect of the parameters variability on the model responses. While the classical local sensitivity analysis studies the effect of small perturbations around nominal parameter values, the GSA studies
the effect of variations over all the parameter space. We denote \(m = [m_1, m_2, \ldots, m_n]^T \in \mathbb{R} \) as the vector of parameters which describe the model and \(d = \{d_1, d_2, \ldots, d_n\} \in \mathcal{D} \) describe observable data. The exact relation between \(m \) and \(d \) is \(d = g(m) \). In this model, the parameters are Young's modulus, Poisson ratio, volume mass, the thickness, length and width of base, cantilever and tip. All the parameters are used in GSA. The list of eigenmodes is \((\varphi_A^i)_{i=1,\ldots,10} \) and \((\varphi_A^j)_{j=1,2}\). The index \(i \) and \(j \) represent "base modes" and "cantilever modes" respectively, see Figure 1.7.

Numerous qualitative and quantitative GSA methods can be found in the literature \[?\]. To analyse the AFMA model, we applied qualitative methods using correlation coefficients Singular Value Decomposition (SVD). Each parameter varies independently from the others according to a uniform probability law between 0.8 and 1.2 times the nominal value. 500 samples are calculated for the first ten modes of base and two modes of cantilever. The correlation coefficients matrix is presented in Figure 1.8 (a), where horizontal base are the input parameters and vertical base are output eigenvalues. Figures 1.8 (b) and (c) represent respectively the SVD matrix and the singular values. Each column of the SVD matrix represents a singular vector.

From Figure 1.8 (a), we can see a strong correlation between the parameters \(h_B \) and \(L_{beam} \) and the model responses. For the SVD analysis, the number of influential parameters is indicated by the singular values. Figure 1.8 (c) shows two significant singular values with respect to the others, which means that only two parameters are influential. Then, the important parameters are determined using the maximum absolute values of the singular vectors associated with the two maximal singular values. From Figure 1.8 (b), we deduce that \(h_B \) and \(L_{beam} \) are the most influential parameters. So, the analysis by correlation matrix and SVD agree. As \(h_B \) and \(L_{beam} \) appear to be the most important parameters, we only consider these two parameters by following.

Updating by Sensitivity

Parameter updating through sensitivity is an iterative procedure based on eigensolutions sensitivities with respect to the model parameters. The convergence algorithm is governed by the evolution of a cost function which returns the computation of the minimum of difference between experimental data and calculated data. This algorithm was implemented in
Figure 1.8: (a) Correlation coefficients matrix, (b) Singular Value Decomposition matrix, (c) Singular values

the AFM toolbox as a tool to perform deterministic identification. According to previous analysis, we note that parameters h_B and L_{beam} are perturbed. We set h_B to 1.3 and L_{beam} to 0.8. After 9 iterations, the convergence is reached and the exact value of the reference parameters (all equal to 1) is returned, see Figure 1.9

Figure 1.9: Evolutions of (a) cost objective function (b) perturbed parameters

Inverse identification

The aim of any inverse problem is to obtain model parameters values from observed data. Here, we use a probabilistic formulation of inverse problems developed by Tarantola since twenty years [1]. This formulation is based on the notion of conjunction of states of information. A priori uncertainty information on the model parameters, represented by the probability density function (PDF) $\rho_M(m)$, experimental uncertainty information with the associated PDF $\rho_M(m)$ and also theoretical uncertainty information $\Theta(d,m)$ are combined to produce a posteriori PDF $\sigma_M(m)$ on the set of model
parameters. As generally no analytic expression exist for these PDFs, a Markov Chain Monte Carlo (MCMC) algorithm is used to sample the a posteriori PDFs [22].

To put this approach into practise, we consider \(m = \{ m_1, m_2 \} = \{ hB, L\text{beam} \} \) as the set of model parameters. The set of observable data is \(d^{\text{obs}} = \{ d_1^{\text{obs}}, \ldots, d_{20}^{\text{obs}} \} \) where \(d_i^{\text{obs}} \) are the eigenvalues \((\lambda_{ij})_{i=1, \ldots, 10} \) and \(j=1,2 \). In this application, no theoretical uncertainty is considered. We are in the case of a classical Bayesian inference, where the marginal probability a posteriori of the model parameters \(\sigma_M(m) \) represents the conditional probability of the observations \(d \) given any \(m \). We supposed that experimental and the model uncertainties are Gaussian. So, \(\rho_M(m) \) and \(\rho_D(d) \) are Gaussian PDFs. It is often difficult to calculate the a posteriori PDF \(\sigma_M(m) \) and the associated marginals \(\sigma_{m_k}(m_k) \) directly. We will estimate the densities by a Monte Carlo simulation. As proposed in [22], a MCMC algorithm of Metropolis-Hastings [21] is utilized.

To check the convergence of the algorithm, we plot the convergence of average \(\hat{\mu}^t_{n_s} \), \(t = 1, \ldots, n_s \) where \(n_s \) is the number of samples. The convergence is reached after 124 iterations, see Figure 1.10. The densities are estimated with the last 500 samples and are plotted Figure 1.11. The vertical line indicates the nominal value of the parameter from which the observations of \(d^{\text{obs}} \) have been simulated. The dispersion diagrams a posteriori between \(hB \), \(L\text{beam} \) and observation 1 and between \(hB \) and \(L\text{beam} \) are also presented in Figure 1.12.

1.2 Semi-Decentralized Approximation of an Optimal Control applied to a Cantilever Array

We apply a recently developed general theory of optimal control approximation to the cantilever array model. The theory applies to the field of finite length distributed systems where actuators and sensors are regularly spaced. It yields approximations implementable on semi-decentralized architectures. Our result is limited to the Linear Quadratic Regulator, but its extension to other optimal control theories for linear distributed systems like LQG or \(H_\infty \) controls is in progress. We focus on illustrating the method more than on providing a mathematically rigorous treatment. In the sequel, we begin with transforming the two-scale model of cantilever arrays into an appropriate form. Then, all construction steps of the approximate Linear Quadratic Regulator are fully presented. Finally, we report numerical simulation results.
1.2.1 General Notations

The norm and the inner product of an Hilbert space E are denoted by $\| \cdot \|_E$ and $(\cdot, \cdot)_E$. For a second Hilbert spaces F, $\mathcal{L}(E,F)$ denotes the space of continuous linear operators defined from E to F. In addition, $\mathcal{L}(E)$ is denoted by $\mathcal{L}(E)$. One says that $\Phi \in \mathcal{L}(E,F)$ is an isomorphism from E to F if Φ is a one-to-one continuous mapping with a continuous inverse.

1.2.2 Reformulation of the Two-Scale Model of Cantilever Arrays

We reformulate the two-scale model presented in Section 1.1 in a set of notations which is more usual in control theory of infinite dimensional systems. We adopt the configuration of the cantilevers without tip, see Figure 1.13. The model expressed in the two-scale referential appears as posed in a rectangle $\Omega = (0,L_B) \times (0,L_C)$. The parameters L_B and L_C represent respectively the base length in the macroscale direction x and the scaled cantilever length in the microscale variable y. The base is modeled by the line $\Gamma = \{(x,y) \mid x \in (0,L_B) \text{ and } y = 0\}$, and the rectangle Ω is filled by an infinite number of cantilevers. We recall that the system motion is described by its bending displacement only. The base being governed by an Euler-Bernoulli beam equation, here we consider two kind of distributed forces, one exerted by the attached cantilevers and the other, denoted by $u_B(t,x)$, originating from an actuator distribution. The bending displacement, the mass per unit length, the bending coefficient and the width being denoted by $w_B(t,x)$, ρ^B, R^B and ℓ_C, the base governing equation states

$$\rho^B \partial_{tt}^2 w_B + R^B \partial_{xx}^4 w_B = -\ell_C R^C \partial_{yyy}^3 w_C - \partial_{xx}^2 u_B. \quad (1.5)$$

The base is still assumed to be clamped, so the boundary conditions are unchanged

$$w_B = \partial_x w_B = 0 \quad (1.6)$$

at both ends. Cantilevers are oriented in the y-direction, and we recall that their motions are governed by an infinite number of Euler-Bernoulli equations distributed along the x-direction. Here, each cantilever is subjected to a control force $u_C(t,x)$ taken, for simplicity, constant along cantilevers. This choice does not affect the method presented hereafter, so it can be replaced by any other realistic force distribution. Denoting by $w_C(t,x,y)$, ρ^C and R^C cantilever bending displacements, mass per unit length, and bending coefficient, the governing equation in $(x,y) \in \Omega$ is

$$\rho^C \partial_{tt}^2 w_C + R^C \partial_{xx}^4 w_C = u_C,$$
1.2.3 Model Reformulation

with the boundary conditions (1.6). The cost functional is simplified accordingly, we set
\[\overline{\partial}_w w_B = w_{B,0}, \quad \partial_y w_C = w_{C,0}, \quad \partial_{yy} w_C = w_{C,1}. \]

The LQR problem is set for control variables \((u_B, u_C) \in U = H^2 \cap H_0^1(\Gamma) \times L^2(\Gamma)\) and for the cost functional
\[
\mathcal{J}(u_B, u_C) = \int_0^\infty \left(\|w_B\|_{H^2}^2(\Gamma) + \|\partial_y w_C\|_{L^2(\Omega)}^2 + \|u_B\|_{H^2 \cap H_0^1(\Gamma)}^2 + \|u_C\|_{L^2(\Gamma)}^2 \right) dt.
\]

1.2.3 Model Reformulation

The first step, in applying the method, consists in transforming the control problem into a control problem into another problem with internal distributed control and observation. To do so, we are lead to make additional assumptions yielding model simplifications. We set \(\tilde{w}_C = w_C - w_B\), solution of an Euler-Bernoulli equation in cantilevers with homogeneous boundary conditions
\[
\begin{aligned}
\rho^C \overline{\partial}_w^2 \tilde{w}_C + R^C \overline{\partial}_y^3 \tilde{w}_C &= u_C - \rho^C \overline{\partial}_w^2 w_B & \text{in } \Omega, \\
\tilde{w}_C &= \overline{\partial}_y \tilde{w}_C = 0 & \text{at } y = 0, \\
\overline{\partial}_{yy} \tilde{w}_C &= \overline{\partial}_{yyy} \tilde{w}_C = 0 & \text{at } y = L_C.
\end{aligned}
\]

We introduce the basis of normalized eigenfunction \((\psi_k)_k\), solution of the corresponding eigenvalue problem
\[
\begin{aligned}
\overline{\partial}_y^4 \psi &= \lambda^C \psi \text{ in } (0, L_C), \\
\psi(0) &= \overline{\partial}_y \psi(0) = 0, \\
\overline{\partial}_{yy}^2 \lambda^C \psi(L_C) &= \overline{\partial}_{yyy} \psi(L_C) = 0, \\
\|\psi_k\|_{L^2(0, L_C)} &= 1.
\end{aligned}
\]

It is well known that, in most practical applications, a very small number of cantilever modes is sufficient to properly describe the system. For the sake of simplicity, we take into account only the first one, keeping in mind that the method can handle more than one mode. Therefore, we adopt the approximation
\[
\tilde{w}_C(t, x, y) \simeq \tilde{w}_C^1(t, x) \psi_1(y),
\]

where \(\tilde{w}_C^1\) is the coefficient of the first mode \(\psi_1\) in the modal decomposition of \(\tilde{w}_C\). Introducing the mean \(\bar{\psi}_1 = \int_0^{L_C} \psi_1 dy\), and \(u_C^1 = \int_0^{L_C} u_C \psi_1 dy\), we find that \(\tilde{w}_C^1\) is solution of
\[
\rho^C \overline{\partial}_w^2 \tilde{w}_C^1 + R^C \lambda^C \tilde{w}_C^1 = u_C^1 - \rho^C \overline{\partial}_w^2 w_B.
\]

In order to avoid the term \(\overline{\partial}_w^2 w_B\), we introduce \(\tilde{w}_C = \tilde{w}_C^1 + \bar{\psi}_1 w_B\), so as to make \(\tilde{w}_C\) be solution of
\[
\rho^C \overline{\partial}_w^2 \tilde{w}_C^1 + R^C \lambda^C \tilde{w}_C^1 = u_C^1 - \rho^C \overline{\partial}_w^2 w_B = u_C^1.
\]

Since,
\[
\overline{\partial}_w^2 \tilde{w}_C = \overline{\partial}_w^2 (\tilde{w}_C + w_B) = \overline{\partial}_w^2 \left[\tilde{w}_C^1 \bar{\psi}_1 + w_B \psi_1 \right] = \overline{\partial}_w^2 \tilde{w}_C^1 \bar{\psi}_1,
\]

we set \(c_1 = \overline{\partial}_w^2 \tilde{w}_C^1\), and obtain that the couple \((\tilde{w}_C, \tilde{w}_C)\) is solution of the system of equations posed on \(\Gamma\),
\[
\begin{aligned}
\rho^C \overline{\partial}_w^2 \tilde{w}_B + R^C \overline{\partial}_y^2 \tilde{w}_B + \lambda^C \tilde{w}_B = -\overline{\partial}_w^2 u_B & \text{ in } \Gamma, \\
\rho^C \overline{\partial}_w^2 \tilde{w}_C + R^C \lambda^C \tilde{w}_C = -\overline{\partial}_w^2 \psi_1 \tilde{w}_B = u_C^1 & \text{ in } \Gamma,
\end{aligned}
\]

with the boundary conditions (1.6). The cost functional is simplified accordingly,
\[
\mathcal{J} \simeq \int_0^\infty \left(\|\overline{\partial}_w^2 w_B(t, x)\|_{L^2(\Gamma)}^2 + \|\lambda^C \tilde{w}_C(t, x)\|_{L^2(\Gamma)}^2 + \|u_B\|_{L^2(\Gamma)}^2 + \|u_C^1\|_{L^2(\Gamma)}^2 \right) dt.
\]
1.2.4 Classical Formulation of the LQR Problem

Now, we write the above LQR problem in a classical abstract setting, see [8]. We set \(z' = (w_B \; \hat{w}_C \; \partial w_B \; \partial \hat{w}_C) \) the state variable, \(u^T = (u_B \; u_L^1) \) the control variable, \(A = \begin{pmatrix} 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 \\ -R_B \partial^4 \varphi_x / \rho_B & -\varepsilon C \partial^2 \varphi_x / \rho_B & 0 & 0 \\ R_C \lambda \partial \varphi_y / \rho_C & -R_C \lambda \partial^2 \varphi_y / \rho_C & 0 & 0 \end{pmatrix} \) the state operator, \(B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\rho^2}{\rho^2} & 0 \\ \frac{I}{\rho^2} \end{pmatrix} \) the control operator, \(C = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & \lambda \partial \varphi_y & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \) the observation operator, \(S = I \) the weight operator and the functional \(J(z_0, u) = \int_0^{t+\infty} \| Cz \|_2^2 + (Su, u)_U \, dt \). Consequently, the LQR problem, consisting in minimizing the functional under the constraint (1.12), may be written under its usual form as

\[
\frac{dz}{dt}(t) = Az(t) + Bu(t) \quad \text{for} \ t > 0 \text{ and } z(0) = z_0, \quad \min_{u \in U} J(z_0, u).
\] (1.14)

Here, \(A \) is the infinitesimal generator of a continuous semigroup on the separable Hilbert space \(Z = H^2_0(\Gamma) \times L^2(\Gamma)^3 \) with dense domain \(\mathcal{D}(A) = H^4(\Gamma) \cap H^2_0(\Gamma) \times L^2(\Gamma) \times H^2_0(\Gamma) \times L^2(\Gamma) \). It is known that the control operator \(B \in \mathcal{L}(U, Z) \), the observation operator \(C \in \mathcal{L}(Z, Y) \), and \(S \in \mathcal{L}(U, U) \), where \(Y = Z \). We also know that \((A, B)\) is stabilizable and that \((A, C)\) is detectable, in the sense that there exist \(G \in \mathcal{L}(Z, U) \) and \(F \in \mathcal{L}(Y, Z) \) such that \(A - BG \) and \(A - FC \) are the infinitesimal generators of two uniformly exponentially stable continuous semigroups. It follows that for each \(z_0 \in Z \), the LQR problem (1.14) admits a unique solution

\[
u^* = -Kz
\] (1.15)

where \(K = S^{-1}B^*P_Z \) and \(P \in \mathcal{L}(Z) \) is the unique self-adjoint nonnegative solution of the operational Riccati equation

\[
(A^* P + PA - PBS^{-1}B^*P + C^* C) z = 0,
\] (1.16)

for all \(z \in \mathcal{D}(A) \). The adjoint \(A^* \) of the unbounded operator \(A \) is defined from \(D(A^*) \subset Z \) to \(Z \) by the equality \(\langle A^* z, z' \rangle_Z = \langle z, A z' \rangle_Z \) for all \(z \in D(A^*) \) and \(z' \in D(A) \). The adjoint \(B^* \in \mathcal{L}(Z, U) \) of the bounded operator \(B \) is defined by \((B^* z, u)_U = (z, Bu)_Z \), the adjoint \(C^* \in \mathcal{L}(Y, Z) \) being defined similarly.

1.2.5 Semi-Decentralized Approximation

This section is devoted to formulate, step by step, the method of approximation.

Matrices of Functions of a Self-Adjoint Operator

Since the approximation method of \(P \) is based on the concept of matrices of functions of a self-adjoint operator, this section is devoted to their definition. We discuss only the simplest case of compact operators which avoid spectral theory technicalities, because it is enough for the present example, see [9] for the general theory. From now on, we denote by \(X \) the separable Hilbert space \(L^2(\Gamma) \) and by \(\Lambda \) the self-adjoint operator \((\partial^4 \varphi_x)^{-1} \) with domain

\[
\mathcal{D}(\Lambda) = H^4(\Gamma) \cap H_0^2(\Gamma) \text{ in } X.
\]

As \(\Lambda \) is self-adjoint and compact, its spectrum \(\sigma(\Lambda) \) is discrete, bounded and made up of real eigenvalues \(\lambda_k \). They are solutions of the eigenvalue problem \(\Lambda \phi_k = \lambda_k \phi_k \) with \(||\phi_k||_X = 1 \). In the sequel, \(I_\sigma = (\sigma_{\min}, \sigma_{\max}) \) refers to an open interval that includes \(\sigma(\Lambda) \).

For a given real valued function \(f \), continuous on \(I_\sigma \), \(f(\Lambda) \) is the linear self-adjoint operator on \(X \) defined by

\[
f(\Lambda) z = \sum_{k=1}^{\infty} f(\lambda_k) z_k \phi_k
\]

where \(z_k = (z, \phi_k)_X \), with domain

\[
\mathcal{D}(f(\Lambda)) = \{ z \in X \mid \sum_{k=1}^{\infty} |f(\lambda_k) z_k|^2 < \infty \}.
\]

Then, if \(f \) is an \(n_1 \times n_2 \) matrix of real valued functions \(f_{ij} \), continuous on \(I_\sigma \), \(f(\Lambda) \) is a matrix of linear operators \(f_{ij}(\Lambda) \) with domain

\[
\mathcal{D}(f(\Lambda)) = \{ z \in X^{n_2} \mid \sum_{k=1}^{n_1} \sum_{j=1}^{n_2} |f_{ij}(\lambda_k)(z_j)_k|^2 < \infty \forall i = 1..n_1 \}.
\]
The controller

Introducing the isomorphisms

In this example, \(\text{(1.16)} \).

Remark 4

Product of a function of \(\Lambda \)

Remark 3

Thus, the approximation is developed directly on \(k \).

In the sequel, we require that the algebraic Riccati equation \(\text{(1.17)} \) admits a unique solution for all \(\lambda \in \mathbb{C} \), which implies that \(a(\lambda) = \Phi_Z^{-1}\Lambda \Phi_Z, b(\lambda) = \Phi_Z^{-1}B\Phi_U \), and \(\varsigma(\lambda) = \Phi_Y^{-1}S\Phi_U \)

be some matrices of functions of \(\Lambda \). In the present example, we propose

\[
\Phi_Z = \begin{pmatrix}
\Lambda_{11} & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I \\
\end{pmatrix}, \quad \Phi_U = \begin{pmatrix}
(-\partial_{z_1}^2)^{-1} & 0 \\
0 & I \\
\end{pmatrix}, \quad \text{and} \quad \Phi_Y = \Phi_Z.
\]

This choice yields

\[
a(\lambda) = \begin{pmatrix}
0 & 0 & \lambda^{-1/2} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \overline{\psi}_f \lambda^{1/2} & 0 \\
0 & 0 & -\overline{\psi}_f \lambda^{1/2} & 0 \\
\end{pmatrix}, \\
b(\lambda) = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \lambda^c & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}, \quad \varsigma(\lambda) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}.
\]

Endowing \(Z, U \) and \(Y \) with the inner products \((z, z')_Z = (\Phi_Z^{-1}z, \Phi_Z^{-1}z')_X, (u, u')_U = (\Phi_U^{-1}u, \Phi_U^{-1}u')_X, \) and \((y, y')_Y = (\Phi_Y^{-1}y, \Phi_Y^{-1}y')_X \), we find the subsequent factorization of the controller \(K \) in \(\text{(1.15)} \).

Proposition 1

The controller \(K \) admits the factorization

\[
K = \Phi_U q(\lambda) \Phi_Z^{-1},
\]

where \(q(\lambda) = s^{-1}(\lambda) b^T(\lambda) p(\lambda) \), and where for all \(\lambda \in \mathbb{C}, p(\lambda) \) is the unique self-adjoint nonnegative matrix solving the algebraic Riccati equation

\[
a^T(\lambda) p + pa(\lambda) - pb(\lambda) s^{-1}(\lambda) b^T(\lambda) p + c^T(\lambda) c(\lambda) = 0.
\]

Sketch of the proof

The algebraic Riccati equation can be found after replacing \(A, B, C \) and \(S \) by their decomposition in the Riccati equation \(\text{(1.16)} \).

In the sequel, we require that the algebraic Riccati equation \(\text{(1.17)} \) admits a unique solution for all \(\lambda \in \mathbb{C} \), which is checked numerically.

Remark 2

In this example, \(\Phi_Z \) is some matrix of function of \(\Lambda \), and so is \(\Phi_U^{-1}K \).

\[
k(\lambda) = \Phi_U^{-1}K.
\]

Thus, the approximation is developed directly on \(k(\lambda) \), but we emphasize that in more generic situations it is pursued on \(q(\lambda) \).

Remark 3

Introducing the isomorphisms \(\Phi_Z, \Phi_Y, \) and \(\Phi_U \) allows to consider a broad class of problems where the operators \(A, B, C \) and \(S \) are not strictly functions of a same operator. In this particular application, the control operator \(B \) is composed with the operator \(-\partial_{z_1}^2 \). This is taken into account in \(\Phi_U \) in a manner in which \(\Phi_Z^{-1}B\Phi_U \) is a function of \(\Lambda \).

Remark 4

We indicate how the isomorphisms \(\Phi_Z, \Phi_Y, \) and \(\Phi_U \) have been chosen. The choice of \(\Phi_Z \) and \(\Phi_Y \) comes directly from the expression of the inner product \((z, z')_Z = (\Phi_Z^{-1}z, \Phi_Z^{-1}z')_X \) and from \((z_1, z_1)'_H(K) = (\Lambda^2)^{1/2} z_1, (\Lambda^2)^{1/2} z_1'_{L^2(p)} \).

For \(\Phi_Y \), we start from \(B = \Phi_Z b(\lambda) \Phi_Z^{-1} \) and from the relation \((u, u')_Y = (\Phi_U^{-1}u, \Phi_U^{-1}u')_X \), which implies that \(-\partial_{z_1}^2 / \rho^B = b_{3,1}(\Phi_U)_{1,1} \) and \(I / \rho^C = b_{4,2}(\lambda)(\Phi_U)_{2,2}. \) The expression of \(\Phi_U \) follows.
Approximation of the Functions of Λ

The third step in the method consists in an approximation of a general function of Λ by a simpler function of Λ easily discretized and implemented in a semi-decentralized architecture. The strategy must be general, and in the same time the approximation must be accurate. A simple choice would be to adopt a polynomial or a rational approximation, but their discretization yields very high errors due to the powers of Λ. This can be avoided when using the Dunford-Schwartz formula, see [27], representing a function of an operator, because it involves only the operator $(\zeta I - \Lambda)^{-1}$ which may be simply, and accurately approximated. However, this formula requires the function be holomorphic inside an open vicinity of σ. Since the function is generally not known, this set cannot be easily determined, so we prefer to proceed within two steps. First, the function is approximated through a highly accurate rational approximation, then the Dunford-Schwartz formula is applied to the rational approximation, with a path tracing out an ellipse including I. This can be avoided when using the Dunford-Schwartz formula, with a path tracing out an ellipse including I.

Since the interval I_σ is bounded, each function $k_{ij}(\lambda)$ have a rational approximation over I_σ, that we write under a global formulation,

$\kappa_N(\lambda) = \frac{1}{2\pi} \int_{\varrho} k_N(\xi) (\xi I - \Lambda)^{-1} d\xi,$

where d_m, d_m' are matrices of coefficients and $N = (N^N, N^D)$ is the couple comprised of the matrix N^N of numerator polynomial degrees and the matrix N^D of denominator polynomial degrees. The path ϱ, in the Dunford-Schwartz formula,

$k_N(\Lambda) = \frac{1}{2\pi} \int_{\varrho} k_N(\xi) (\xi I - \Lambda)^{-1} d\xi,$

is chosen to be an ellipse parameterized by

$\zeta(\theta) = \zeta_1(\theta) + i\zeta_2(\theta), \text{ with } \theta \in [0, 2\pi].$

The parametrization is used as a change of variable, so the integral is rewritten on the form $I(\varrho) = \int_{0}^{2\pi} g(\theta) d\theta$, and may be approximated by a quadrature formula involving M nodes $(\theta_l)_{l=1,...,M} \in [0, 2\pi]$, and M weights $(w_l)_{l=1,...,M}$,

$I_M(\varrho) = \sum_{l=1}^{M} g(\theta_l) w_l.$

For each $z \in X^4$ and $\zeta \in \varrho$, we introduce the four-dimensional vector field

$v^\xi = -i\zeta^\xi k_N(\xi) (\xi I - \Lambda)^{-1} z.$

Decomposing v^ξ into its real part v_1^ξ and its imaginary part v_2^ξ, the couple (v_1^ξ, v_2^ξ) is solution of the system

$$\begin{cases}
\zeta_1 v_1^\xi - \zeta_2 v_2^\xi - \Lambda v_1^\xi = \text{Re}(-i\zeta^\xi k_N(\xi)) z, \\
\zeta_2 v_1^\xi + \zeta_1 v_2^\xi - \Lambda v_2^\xi = \text{Im}(-i\zeta^\xi k_N(\xi)) z.
\end{cases}$$

(1.20)

Thus, combining the rational approximation k_N and the quadrature formula yields an approximate realization $k_{N,M}(\Lambda)$ of $k(\Lambda)$,

$k_{N,M}(\Lambda) z = \frac{1}{2\pi} \sum_{l=1}^{M} v_1^\xi(\theta_l) w_l.$

(1.21)

This formula is central in the method, so it is the center of our attention in the simulations. A fundamental remark is that, a "real-time" realization, $k_{N,M}(\Lambda) z$, requires solving M systems like (1.20) corresponding to the M nodes $\zeta(\theta_l)$. The matrices $k_N(\zeta(\theta_l))$ could be computed "off-line" once and for all, and stored in memory, so their determination would not penalize a rapid real-time computation. In total, the ultimate parameter responsible of accuracy in a real-time computation, apart from spatial discretization discussed in next Section, is M the number of quadrature points.

Spatial Discretization

The final step consists in a spatial discretization of Equation (1.20), it does not represent a specific novelty, so we do not discuss it through numerical simulations. For the sake of simplicity, the interval Γ being meshed with regularly spaced
nodes separated by a distance h, we introduce Λ_h^{-1} the finite difference discretization of Λ^{-1},

$$
\Lambda_h^{-1} = \frac{1}{h^2} \begin{pmatrix}
H^4 & 0 & 0 & 0 & 0 & \cdots & 0 \\
-\frac{3}{2}h^3 & 2h^3 & -\frac{1}{2}h^3 & 0 & 0 & \cdots & 0 \\
1 & -4 & 6 & -4 & 1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots \\
0 & \cdots & 0 & 1 & -4 & 6 & -4 & 1 \\
0 & \cdots & 0 & 0 & 0 & -\frac{1}{2}h^3 & 2h^3 & -\frac{3}{2}h^3 \\
0 & \cdots & 0 & 0 & 0 & 0 & 0 & h^4
\end{pmatrix}.
$$

In practice, the discretization length h is chosen small compared to the distance between cantilevers. Then, z_h denoting the vector of nodal values of z, for each ζ we introduce $(v^1_{1,h}, v^2_{2,h})$, a discrete approximation of (v^1, v^2), solution of the discrete set of equations,

$$
\begin{aligned}
\zeta v^1_{1,h} - \zeta v^2_{2,h} - \Lambda_h v^1_{1,h} &= Re(-i\zeta k_N(\zeta)) z_h, \\
\zeta v^1_{1,h} + \zeta v^2_{2,h} - \Lambda_h v^2_{2,h} &= Im(-i\zeta k_N(\zeta)) z_h.
\end{aligned}
$$

Finally, an approximate optimal control, intended to be implemented in a set of spatially distributed actuators, could be estimated from the nodal values,

$$
\Phi_{U,h} = \Phi_{U} \frac{1}{2\pi} \sum_{i=1}^{M} v^j_{1,h} w_i,
$$

estimated at mesh nodes, where $\Phi_{U,h}$ is the discretization of Φ_U which requires the discretization of $-\partial^2_{xx}$ which can be done as for Λ by using a finite difference method.

1.2.6 Numerical Validation

To build a rational interpolation k_N of the form (1.19) over I_σ, we mesh the interval with $L + 1$ distinct nodes $\lambda_0, \ldots, \lambda_L$. Then all $p(\lambda_n)$ solutions of the algebraic Riccati equation are accurately computed with a standard solver. Computing the rational approximation start by imposing $L + 1$ conditions

$$
k_N(\lambda_n) = k(\lambda_n),
$$

or equivalently that

$$
\sum_{m=0}^{N^N} d_m \lambda_n^m - k(\lambda_m) \sum_{m'=0}^{N^D} d_{m'} \lambda_n^{m'} = 0,
$$

for $n = 0, \ldots, L + 1$. Then, when L is large enough, the resulting system with $N^N + N^D + 2$ unknowns, $[d, d'] = [d_0, \ldots, d_{N^N}, d'_0, \ldots, d'_{N^D}]$, is overdetermined, so it is solved in the mean square sense.
Table 1.1: Errors in Rational Approximations

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>N_{ij}</th>
<th>e_{ij} \times 10^{-7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>(7, 19)</td>
<td>4.78</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>(7, 20)</td>
<td>0.69</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>(13, 8)</td>
<td>3.83</td>
</tr>
<tr>
<td>(1, 4)</td>
<td>(7, 19)</td>
<td>1.19</td>
</tr>
<tr>
<td>(2, 1)</td>
<td>(8, 20)</td>
<td>1.81</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>(7, 19)</td>
<td>1.19</td>
</tr>
<tr>
<td>(2, 3)</td>
<td>(20, 10)</td>
<td>0.89</td>
</tr>
<tr>
<td>(2, 4)</td>
<td>(19, 7)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

In a numerical experiment, we have set all coefficients \(R^B, \rho^B, \ell_C, R^C, \rho^C \) and \(L_C \) to one, and \(L_B = 4.73 \). Thus, all eigenvalues of \(A \) turns to be included in \((0, 1)\), the first cantilever eigenvalue turns to be equal to \(\lambda_1^C = 12.36, \bar{\psi}_1 = -0.78 \) and \(c_1 = 9.68 \). Moreover, we have chosen \(L = 100 \) nodes logarithmically distributed along \(I_\sigma = (10^{-2}, 1) \). We remark that the shapes of all spectral functions \(k_{ij} \) involved in \(K \), represented in Figure 1.14, exhibit a singular behavior at the origin. This shows that this example is by no means trivial. In Table 1.1, we report polynomial degrees \(N = (N^N, N^D) \) and relative errors

\[
e_{ij} = \frac{||k_{ij,N} - k_{ij}||_{L^2(I_\sigma)}}{||k_{ij}||_{L^2(I_\sigma)}},
\]

between the exact \(k \) and its rational approximation \(k_N \). The degrees \(N^N \) and \(N^D \) can be chosen sufficiently large so that errors are sufficiently small, since this has no effect on on-line control computation time. Numerical integrations have been performed with a standard trapezoidal quadrature rule. Relative errors, between the exact functions and final approximations,

\[
E_{ij} = \frac{||k_{ij,N,M} - k_{ij}||_{L^2(I_\sigma)}}{||k_{ij}||_{L^2(I_\sigma)}}
\]

are reported in Figure 1.15, in logarithmic scale, for \(M \) varying from \(10 \) to \(10^5 \). The results are satisfactory. Accuracy is proportional to the number of nodes. So it may be easily tuned without changing spatial complexity governed by the operator \(\Lambda \).
1.3 Simulation of Large-Scale Periodic Circuits by a Homogenization Method

This section focuses on the simulation of spatially periodic circuits that may come, for instance, from realization of our control approximations. The periodic unit cell is limited to linear and static components but its number can be very large. Our theory allows one to simulate arrays of electronic circuits which are far away from the possibility of regular circuit simulators like Spice. It is an adaptation of the two-scale approach used in Section 1.1 and has been introduced in [19]. The resulting model consists in a partial differential equations (PDE), related to a macroscopic electric potential, coupled with local circuit equations. In the following, we present the general framework illustrated through a simple example. The numerical resolution of the PDE can be done with usual computational tools. Solving this PDE and postprocessing its solution leads to an approximation of all voltages and currents. Theoretically, more the number of cells is large, more the model is accurate. The method is illustrated on a basic circuit to allow hand calculations, which are mostly matrix multiplications.

1.3.1 Linear Static Periodic Circuits

We consider the class of periodic circuits in \(d \) space dimensions. An example of such circuit in two space dimensions is shown in Figure 1.16. The circuit cell is detailed on Figure 1.17. Some voltage or current sources, whose value may be zero, are placed on the boundary to realize specific boundary conditions. We assume that the number of cells is large in all the \(d \) directions. Mathematically, it is easier to formalize the problem by considering that the whole circuit occupies a unit square \(\Omega = (0, 1)^d \) and that the period lengths, in all directions, are equal to an identical small parameter \(\varepsilon \) (cf. Figure 1.16).

We limit ourselves to the study of circuits whose cell is linear and static. Precisely, the components of a cell are limited to the Spice elements \(R, V, I, E, F, G, H \). All ports of any multiport component \(E, F, G, H \) must belong to a same cell. The expanded cell is arbitrarily defined in a unit cell \(Y = (-1/2, +1/2)^d \) (see Figure 1.17). We map any discrete node \(n \) onto a continuous coordinates \((y_1, \ldots, y_d) \). The vector \(y(n) \in \mathbb{R}^d \) is the coordinate vector of a node \(n \). For example, the coordinates of the nodes in Figure 1.17 are \(y(1, \ldots, 6) \).

In particular, the coordinates of the node \(n = 3 \) is the vector \((1/2, 0)^T\).

The maps of voltages and currents from the whole circuit (global network) to the cell circuit (local network) are defined as follows. First, we denote by

\[
E = \text{the branch set of the whole circuit},
\]
\[
N = \text{the node set of the whole circuit},
\]
\[
E = \text{the branch set of the unit cell circuit},
\]
\[
N = \text{the node set of the unit cell circuit},
\]

and we define three indices

- the global index \(\mathcal{I} \) references all the branches of the whole circuit,
• the multi-integer \(\mu = (\mu_1, \ldots, \mu_d) \in \{1, \ldots, m\}^d \) enumerates all the cells \(Y^d_\mu \) in the circuit \(\Omega \),

• the local index \(j \in \{1, \ldots, |E|\} \) enumerates all the branches of the unit cell \(Y \).

Each branch voltage or current can then be referenced by the index \(I \) or by the couple \((\mu, j) \). This is a one–to–one correspondence denoted by \(I \sim (\mu, j) \). Using this correspondence, for each vector \(u \in \mathbb{R}^{|E|} \), one may define a unique tensor \(U_{\mu j} \) with \((\mu, j) \in \{1, \ldots, m\}^d \times \{1, \ldots, |E|\}\) by \(U_{\mu j} = u_I \) for \(I \sim (\mu, j) \).

1.3.2 Circuit Equations

The electrical state of a circuit can be characterized [7] by the vectors \((\varphi, v, i) \) where,

\[
\begin{align*}
\varphi & \in \mathbb{R}^{|N|} \quad \text{the nodal voltages (or electric potentials)}, \\
v & \in \mathbb{R}^{|E|} \quad \text{the branch voltages}, \\
i & \in \mathbb{R}^{|E|} \quad \text{the branch currents}.
\end{align*}
\]

We can formulate the circuit equations under the form

\[
\begin{align*}
v &= \omega^T \varphi, \\
\mathcal{A} i + \mathcal{M} v &= u_s, \\
i^T w &= 0, \\
\text{for all } w &= \omega^T \psi \text{ with } \psi \in \Psi.
\end{align*}
\]

where \(u_s \in \mathbb{R}^{|E|} \) represents voltage and current sources merged in single vector completed by some zeros. Equation (1.22) is the Kirchhoff’s Voltage Law. Equation (1.23) represents the constitutive equations and Equations (1.24, 1.25) correspond to the Tellegen theorem. Here \(\Psi \) is the set of admissible potentials for the circuit problem, that is to say

\[
\Psi = \left\{ \psi \in \mathbb{R}^{|N|} \text{ such that } \psi_n = 0 \text{ for all ground nodes } n \right\}.
\]

As the matrices \(\mathcal{M} \in \mathbb{R}^{|E|} \times \mathbb{R}^{|E|}, \mathcal{A} \in \mathbb{R}^{|E|} \times \mathbb{R}^{|E|} \) and the vector \(u_s \in \mathbb{R}^{|E|} \) are exclusively deduced from the branch equations of the circuit, they can be expressed in terms of two reduced matrices \(M \in \mathbb{R}^{|E|} \times \mathbb{R}^{|E|} \) and \(R \in \mathbb{R}^{|E|} \times \mathbb{R}^{|E|} \) and a reduced vector \(u_s \in \mathbb{R}^{|E|} \). The reduced matrices and vector are simply derived from the constitutive equations of the unit cell, which are in the example,

\[
\begin{align*}
-v_1 + r_i 1 &= 0, \\
-v_2 + r_i 2 &= 0, \\
-v_3 + r_i 3 &= 0, \\
-v_4 + r_i 4 &= 0, \\
i_5 &= i_s.
\end{align*}
\]

The transpose \(\omega^T \in \mathbb{R}^{|E|} \times \mathbb{R}^{|N|} \) of the incidence matrix can also be expressed in terms of a reduced matrix noted by \(\lambda^T \) (with a little abuse of notation). Notice that we cannot find a reduced matrix for the incidence matrix itself. We introduce

![Figure 1.17: Expanded cell of the circuit.](image-url)
the local (complete) incidence matrix $A \in \mathbb{R}^{|N| \times |E|}$,

$$A_{ij} = \begin{cases} +1 & \text{if branch } j \text{ leaves node } i, \\ -1 & \text{if branch } j \text{ enters node } i, \\ 0 & \text{if branch } j \text{ does not touch node } i. \end{cases}$$

The solution of the simplified model introduced in this section realizes an approximation of the solution of (1.22–1.25) for small values of ε ($\varepsilon < < 1$). It is derived as a limit of the latter when the cells length ε diminishes towards zero.

1.3.3 Direct Two–scale Transform T_E

The general idea of the two–scale transform rests on gathering the voltages or currents both denoted by \hat{u} of a same branch j of all cells. Indeed, the voltages or currents of all branches j are defined by a function $x \mapsto \hat{u}_j(x)$, which depends on the parameter ε and whose limit when $\varepsilon \to 0$ will be calculated.

Let us first denote by $\chi_{Y_\mu}(x)$ the characteristic function of the cell Y_μ equals to 1 when $x \in Y_\mu$ and 0 otherwise. As an example, the characteristic function $\chi_{Y_3^2}$ of the cell $\mu = (3, 2)$ is represented in Figure 1.18.

![Figure 1.18: Caracteristic Function $\chi_{Y_3^2}$](image)

The two–scale transform \hat{u} of the branch vector $u \in \mathbb{R}^{|E|}$ is the vector of Y_μ^ε–piecewise constant functions $\hat{u} \in \mathbb{P}^0(\Omega)^{|E|}$,

$$\hat{u}_j(x) = \sum_{\mu \in \{1, \ldots, M\}} \chi_{Y_\mu}(x)U_{\mu j}.$$ \hspace{1cm} (1.26)

where $U_{\mu j} = u_\mu$ with $(\mu, j) \sim J$. For example, $\hat{v}_j(x)$ is the voltage $V_{\mu j}$ of the branch referred by the local index j of the cell μ to which x belongs. By construction, the function $x \mapsto \hat{v}_j(x)$ is constant on all cells. Figure 1.19 illustrates this concept by representing a component of an arbitrary vector v. It indicates that the voltage $\hat{v}_2(x)$ related to the branch $j=2$ (cf. Figure 1.17) of the cell $(\mu_1, \mu_2) = (1, 4)$ is equal to 2V.

We denote by T_E the linear map $u \mapsto \hat{u}$ from \mathbb{R}^{E} to $\mathbb{P}^0(\Omega)^{|E|} \subset L^2(\Omega)^{|E|}$, with $\mathbb{P}^0(\Omega)$ the set of piecewise constant functions over the cells. Our model is derived for the limit, when $\varepsilon \to 0$, of all vectors involved in the circuit equations. The actual circuit voltages and currents are then computed by inverting the two–scale transform with the physical value of ε. Next Section is devoted the construction of T_E^{-1}.

1.3.4 Inverse Two–scale Transform T_E^{-1}

The calculation of the inverse two–scale transform T_E^{-1} is done by computing the adjoint T_E^* and then proving two identity properties between these transforms. The notation for inner products and norms in \mathbb{R}^{E} and $L^2(\Omega)^{|E|}$ are collected in the following table,

| Inner product | $u, v \in \mathbb{R}^{E}$ | $u, v \in L^2(\Omega)^{|E|}$ |
|---------------|--------------------------|-------------------------------|
| $\langle u, v \rangle$ | $\langle u, v \rangle$ |
| $\| v \|_2 = \| v, v \|^{1/2}$ | $\| u \| = \langle u, u \rangle^{1/2}$ |
and defined by
\[
[u, v] = \varepsilon^d u^T v,
\]
\[
(u, v) = \sum_{j=1}^{|E|} \int_{\Omega} u_j(x)v_j(x)dx.
\]
For all \(u \in L^2(\Omega)^{|E|} \), the adjoint \(T_E^* u \) is defined through the equality
\[
[T_E^* u, v] = (u, T_E v) \quad \text{for all } v \in \mathbb{R}^{|E|}.
\]
(1.27)
The calculation of \(T_E^* \) from (1.27) is given in Appendix and leads to
\[
(T_E^* u)_j = \varepsilon^{-d} \int_{Y_\mu_j} u_j(x)dx.
\]
(1.28)
Moreover, Appendix proves that \(T_E^* T_E = I_E \) on \(\mathbb{R}^{|E|} \) and \(T_E T_E^* = I_E \) on \(\mathbb{P}^0(\Omega)^{|E|} \). As \(T_E \) is one-to-one from \(\mathbb{R}^{|E|} \) to \(\mathbb{P}^0(\Omega)^{|E|} \), these two identities show that
\[
T_E^{-1} = T_E^*.
\]

1.3.5 Two-scale transform \(T_N \)

The two-scale transform \(\hat{\varphi} \) of the nodal vector \(\varphi \in \mathbb{R}^{|\mathcal{V}|} \) is the vector of \(Y_\mu \)-piecewise constant functions \(\hat{\varphi} \in \mathbb{P}^0(\Omega)^{|N|} \) defined by
\[
\hat{\varphi}_j(x) = \sum_{\mu \in \{1, \ldots, m\}} \chi_{Y_\mu_j}^e(x) \Phi_{\mu,j}.
\]
(1.29)
where \(\Phi_{\mu,j} = \varphi_\mu \) with \((\mu, j) \sim \mathcal{J} \). We denote by \(T_N \) the linear map \(\varphi \mapsto \hat{\varphi} \) from \(\mathbb{R}^{|\mathcal{V}|} \) to \(\mathbb{P}^0(\Omega)^{|N|} \subset L^2(\Omega)^{|N|} \). As the nodes located on the cell boundary belong to two adjacent cells \(T_N \) is not one to one.

1.3.6 Behavior of “Spread” Analog Circuits

We start by illustrating the scaling of currents and voltages in a one-dimensional circuit. A circuit spread out over a large region may have some paths linking opposite sides. In view of deriving a partial differential equation for the electric potential, we assume that voltages are increments of the order \(\varepsilon \) along such paths. Flowing current result of numerous \((1/\varepsilon)\) additive sources, so it has a magnitude of 1 as soon as the sources are of the order of \(\varepsilon \) (Figure 1.20).

A branch which does not belong to any crossing path is necessarily part of a path to the ground, so its voltage magnitude is 1. We choose its magnitude current be of the order \(\varepsilon \) as it may be a source for a crossing path (Figure 1.21).

The periodicity of the circuit implies that each node \(n \) located on the boundary of the unit cell has its counterpart \(n' \) on the opposite side. We assume that each such couple is linked by at least a crossing path. We introduce the set \(E_C \subset E \)
constituted of all the branches of at least one path linking each couple \((n,n')\). Of course, a link between \((n,n')\) which includes a ground node is not considered as a path. The complementary set \(E-E_C\) is denoted by \(E_{NC}\) (non-crossing pathes).

In the case where many crossing pathes are linking \(n\) and \(n'\), the designer is free to decide which are included in \(E_C\) and which are not, with regard to the above discussion about current and voltage magnitudes. The subset \(E_C\) is partitioned in its \(n_c\) connected components \(E_C = \bigcup_{p=1}^{n_c} E_{Cp}\). In the following, the main result on the circuit equations will be derived for the connected components of \(E_C\) and not for \(E_C\) itself.

The subsets \(N_C\) and \(N_{NC}\) of \(N\) are defined as the set of nodes involved in at least one of the branch of \(E_C\) and \(E_{NC}\) respectively. Since the branches of \(E_C\) and \(E_{NC}\) have common nodes, these two subsets \(N_C\) and \(N_{NC}\) are not a partition of \(N\), \(N_C \cap N_{NC} \neq \emptyset\). \(N_{Cp}\) is the set of nodes involved in the branches of \(E_{Cp}\). The subsets \(N_{Cp}\) constitute a partition of \(N_C\), \(N_C = \bigcup_{p=1}^{n_c} N_{Cp}\), as the subsets \(E_{Cp}\) constitute a partition of \(E_C\) and they are disconnected. The definitions and some properties of these sets are depicted on Figure 1.22.

Finally, \(N_{C+1}\) is a set of \(n_c\) nodes constituted of one arbitrary node of each connected component \(N_{Cp}\) and \(N_0\) is the set containing only the cell ground node.

1.3.7 Cell Equations (Problem Micro)

The model formulation is decomposed in four parts. We first formulates the linear relation between mean electric potentials \(\varphi_C^0\) along crossing pathes and the other fields as branch currents and voltages. This relation is strictly local in each cell. In the next Section, the linear relation is simply rewritten introducing linear operators. They are then used for coefficients of the boundary value problem on \(\varphi_C^0\). Finally, actual voltages and currents are computed thanks to the inverse
two-scale transform.

The previous assumptions about voltage and current magnitudes is formulated using the scaling matrices S_v, S_c and S_s applied to the two-scale transforms,

\[\hat{i}^e = S_v \hat{i}, \]
\[\hat{v}^e = S_c \hat{v}, \]
\[\hat{u}^e_t = S_s \hat{u}_t. \]

with the $|E| \times |E|$ scaling matrices defined as

\[S_v = \epsilon^{-1} E_c + E_{ENC}, \] \hfill (1.30)
\[S_c = E_c + \epsilon^{-1} I_{ENC}, \] \hfill (1.31)
\[S_s = \Pi_c S_c + \Pi_s S_v. \] \hfill (1.32)

Here the $|E| \times |E|$ matrices I_{EC} and I_{ENC} are the projectors on the subspaces of $\mathbb{R}^{|E|}$ generated by vectors with non vanishing values on E_C and E_{NC}.

\[(I_{EC})_{jk} = \begin{cases} \delta_{jk} & \text{if } e_j \in E_C, \\ 0 & \text{otherwise}, \end{cases} \]
\[(I_{ENC})_{jk} = \begin{cases} \delta_{jk} & \text{if } e_j \in E_{NC}, \\ 0 & \text{otherwise}. \end{cases} \]

Moreover, each branch equation in (1.23) is homogeneous to a current or to a voltage, this leads to a partition of E

We prove that the vector of electric potential $\phi^0(x)$ is a constant $\phi^0_c(x)$ in each connected component of cell crossing paths. So, we split it according to $\phi^0 = \phi^0_c + \phi^0_{NC}$, I^0 being defined at (1.39), with $\phi^0_c = (\phi^0_{cp})_{p=1,..,n_c}$ and $\phi^0_{NC}(x)$ being the electric potentials at nodes not in crossing paths. Electric potential variations within connected components of crossing paths are recovered thanks to the corrector $\hat{\phi}_c^1$.

\[\phi_c = \phi^0 + \epsilon \phi_c^1. \]

We are ready to state the cell equations. We begin with assuming that ϕ^0_c is known.

For given $\phi^0_c \in \Psi^H$, Ψ^H defined in (1.47), and $u^0_i \in L^2(\Omega; \mathbb{R}^{|N|})$ there exist $\phi^1_c \in L^2(\Omega; \mathbb{R}^{|N_c|})$ such that $\phi^0_{NC} \in L^2(\Omega; \mathbb{R}^{|N|})$, $I^0 \in L^2(\Omega; \mathbb{R}^{|E|})$ and $v \in L^2(\Omega; \mathbb{R}^{|E|})$ are solution of the algebraic cell circuit equations at each location of Ω.

\[v = I_{EC} A^T \phi^1_c + I_{ENC} A^T \phi^0_{NC}, \] \hfill (1.33)
\[R^0 i^0 + M^0 v = u^0_i - M^0(\nabla \phi^0_c + I_{ENC} A^T I^0 \phi^0_c), \] \hfill (1.34)
\[i^0 w = 0, \] \hfill (1.35)
\[\text{for all } w = I_{EC} A^T \psi^1_c + I_{ENC} A^T \psi^0_{NC} \text{ with } (\psi^1_c, \psi^0_{NC}) \in \Psi^m. \] \hfill (1.36)
Moreover, the vector \(v^0 \in L^2(\Omega) \) is expressed by
\[
v^0 = v + \tau \nabla \varphi_C^0 + I_{E_{NC}} A^T \varphi_C^0.
\]
We assume that the solution is unique. This assumption is generally satisfied once the global circuit equations has a unique solution.

The admissible nodal voltage set is
\[
\Psi^{\text{ad}} = \{(\varphi^1_C, \varphi^0_{NC}) \in L^2(\Omega; \mathbb{R}_{\text{per}}^{|N|}) \times L^2(\Omega; \mathbb{R}_{\text{per}}^{|N|}) \text{ such that } I_{N_{\text{per}}=N_{\text{per}}} \psi_C^1 = 0 \text{ and } I_{N_{\text{per}}\neq N_{\text{per}}} \psi_{NC}^0 = 0\}.
\]

The set \(\mathbb{R}_{\text{per}}^{|N|} \) is defined as,
\[
\mathbb{R}_{\text{per}}^{|N|} = \{ \phi \in \mathbb{R}^{|N|} \text{ such that } \phi_j = \phi_{j'} \text{ for all couple } (j, j') \text{ of opposite nodes} \}.
\]
The \(|E| \times d \times n_c \) tensor \(\tau \) is defined by
\[
\tau_{lp} = \left\{ \begin{array}{ll}
0 & \text{for } e_l \in E_{Cp}, \\
 \sum_j y_j n_j \lambda_{jl} & \text{otherwise},
\end{array} \right. \quad (1.37)
\]
We recall that \(y(n) \in \mathbb{R}^d \) is the coordinate vector of a node \(n \), and we use the tensor product notation,
\[
(\tau \theta)_l = \sum_k \tau_{lkp} \theta_{kp}, \quad (1.38)
\]
where the summation is on the two last indices of \(\tau \).

The \(|N| \times n_c \) matrix \(I^0 \) is defined by
\[
I^0_{ip} = \left\{ \begin{array}{ll}
1 & \text{if } n_j \in N_{Cp}, \\
0 & \text{otherwise},
\end{array} \right. \quad (1.39)
\]
\(N_{Cp} \) is the set of nodes involved in the branches of \(E_{Cp} \).

1.3.8 Reformulation of the Problem Micro

In the next section, we state that \(\varphi_C^0 \) is the solution of a partial differential equation, so once \(\varphi_C^0 \) is known, \(\xi^0 \) and \(v^0 \) can be computed. The equations (1.33–1.36) being linear, there exists some matrices \(L, H, \) and a third order tensor \(R \), such that \(\xi^0, \varphi_{NC}^0 \) and \(v \) that can be expressed as function of \(\varphi_C^0 \), its gradient \(\nabla \varphi_C^0 \) and the vector source \(u^0 \),
\[
\xi^0 = L \varphi_C^0 + R \nabla \varphi_C^0 + \mathcal{H} u^0, \quad (1.40)
\]
\[
\varphi_{NC}^0 = L \varphi_C^0 + R \varphi_C^0 + \mathcal{H} u^0, \quad (1.41)
\]
\[
v = L \varphi_C^0 + R \varphi_C^0 + H u^0. \quad (1.42)
\]
The computation of the vector \(v^0 \) is then unchanged,
\[
v^0 = v + \tau \nabla \varphi_C^0 + I_{E_{NC}} A^T \varphi_C^0. \quad (1.43)
\]
The terms \(L, R, \) and \(H \) are of course independent of \(\varphi_C^0, \nabla \varphi_C^0 \) and \(u^0 \) and therefore can be used to express the coefficients in the equation of \(\varphi_C^0 \).

1.3.9 Homogenized Circuit Equations (Problem Macro)

In this Section, we state the equation satisfied by \(\varphi_C^0 \).

The vector \(\varphi_C^0 \in \Psi^H \) is solution of the \(n_c \) partial differential equations, so–called homogenized equations, with its boundary conditions,
\[
A^H (R \nabla \varphi_C^0 + L \varphi_C^0) = -A^H \mathcal{H} u^0, \quad (1.44)
\]
\[
\varphi_C^0 = 0 \text{ on } \Gamma_0^p, \quad (1.45)
\]
\[
(R \nabla \varphi_C^0 + L \varphi_C^0) n_e = 0 \text{ on } \Gamma - \Gamma_0^p. \quad (1.46)
\]
\(\Gamma_{0p} \) is the part of the boundary \(\Gamma \) of \(\Omega \) where the \(p^{th} \) connected component is grounded. The operator \(A^H \) is defined by

\[
A^H = -\partial_{\tau^x} + f^{0T} A t_{Ex_{C}},
\]

where \(\partial_{\tau^x} = \tau^x \nabla i \) with \(\tau^x_{pkl} = \tau_{ikp} \) and the use of convention (1.38). The derivative \(\partial_{\tau^x} \Phi^0_{C} \) and the normal \(n_\tau \) are defined by

\[
\partial_{\tau^x} \Phi^0_{C} = \tau \nabla \Phi^0_{C},
\]

\[
(n_\tau)_l = \sum_{k=1}^{d} \tau_{ikp} n_k.
\]

\(V \) being the gradient \((\partial_{\gamma k})_{k=1,d} \) and \(n = (n_k)_{k=1,d} \) being the outward unit normal vector to the boundary \(\Gamma \) of \(\Omega \). The coefficients \(A^H \) and the derivatives \(\nabla \tau \) depend on node coordinates inherited from the expression (1.37) of \(\tau \).

Finally, the admissible set of macroscopic potential is

\[
\Psi^H = \{ \psi \in L^2(\Omega)^n \text{ such that } \partial_{\tau} \psi \in L^2(\Omega)^{|E|} \text{ and } \psi_i(x) = 0 \text{ on } \Gamma_{0k} \}. \tag{1.47}
\]

Let us turn to the example depicted on Figure 1.16. \(\Phi^0_{C} \) has only one component \(\Phi^0_{Cl} (n_c = 1) \), we assume that \(r = \varepsilon r^0 \) and \(i_j = \varepsilon^0 i_j \). \(\Phi^0_{C} \) is then solution of the partial differential equation

\[
\frac{\partial^2 \Phi^0_{Cl}}{\partial x_1^2} + \frac{\partial^2 \Phi^0_{Cl}}{\partial x_2^2} = -2 r^0_i \text{ in } \Omega,
\]

\[
\Phi^0_{Cl} = 0 \text{ on } \Gamma_{01},
\]

\[
\nabla \Phi^0_{Cl}, n_\tau = 0 \text{ on } \Gamma - \Gamma_{01}.
\]

Once the solution \(\Phi^0_{Cl} \) is computed, the two-scale limits \((\nu^0, i^0) \) are expressed by (1.40)–(1.43). For the example, the two–scale current and voltage are given by

\[
\nu^0 = -\frac{1}{2} \left(\frac{\partial \Phi^0_{Cl}}{\partial x_1}, \frac{\partial \Phi^0_{Cl}}{\partial x_1}, \frac{\partial \Phi^0_{Cl}}{\partial x_2}, \frac{\partial \Phi^0_{Cl}}{\partial x_2}, 2 \Phi^0_{Cl} \right)^T,
\]

\[
i^0 = -\frac{1}{2} \left(\frac{1}{\rho^0} \frac{\partial \Phi^0_{Cl}}{\partial x_1}, \frac{1}{\rho^0} \frac{\partial \Phi^0_{Cl}}{\partial x_2}, \frac{1}{\rho^0} \frac{\partial \Phi^0_{Cl}}{\partial x_1}, \frac{1}{\rho^0} \frac{\partial \Phi^0_{Cl}}{\partial x_2}, -2 \Phi^0 \right)^T.
\]

1.3.10 Computation of Actual Voltages and Currents

Actual voltages and currents may be then recovered through the inverse two-scale transform (1.28) and inverse scalings (1.30–1.32),

\[
\nu \approx T_E^{-1} S_v^{-1} \nu^0,
\]

\[
i \approx T_E^{-1} S_i^{-1} i^0.
\]

The approximation of the node voltages \(\nu \) is realized on a different manner. From the solution \(\Phi^0_{C} \) of (1.44–1.46) the approximation of the node voltages is built as follows (neglecting the first order correction),

\[
\Phi_{\nu} \approx \Phi^0_{C}(x_{\nu} + \varepsilon \gamma(n_j)) \text{ for } \nu \sim (\mu, j) \text{ and } n_j \in N_C,
\]

where \(x_{\nu} \in [0,1]^d \) is the coordinate vector of the center of the cell \(\mu \) (Figure 1.16) and we recall that \(\gamma(n_j) \in [-1/2, 1/2]^d \) is the coordinate vector of the node \(n_j \) (Figure 1.17). For the voltage at the nodes which belong to a non crossing path, the approximation is more simple because it does not need to refer to the spatial location in the cell

\[
\Phi_{\nu} \approx \Phi^0_{C}(x_{\nu}) \text{ for } \nu \sim (\mu, j) \text{ and } n_j \in N - N_C - N_0.
\]

A comparison of the solutions computed by the two–scale model with those obtained by a direct circuit simulation is has been done for the example circuit with \(10 \times 10 \) cells. In the following simulation results, all the circuit boundaries are connected to ground and the component values are \(\rho^0 = 10 \; k\Omega \) and \(i^0 = 1 \; mA \). The comparison focus only on node voltages magnitude, their location on the domain being shown on Figure 1.23.

The computation of \(\Phi^0_{C} \) has been done using a Finite Element Method (FEM) on a regular mesh of \(40 \times 40 \) squares (see Figure 1.24). We must emphasize that the mesh size is chosen to obtain an accurate numerical solution of the PDE and is not related at all to the number of the cells of the circuit. The maximum amplitude is 1.4742 \(V \). A direct simulation of the periodic circuit has been made with Spice. The maximum amplitude is 1.4723 \(V \). In Figure 1.24 the continuous FEM solution \(\Phi_{\nu} = \Phi^0_{C}(x_{\nu} + \varepsilon \gamma(n_j)) \) is represented by the mesh while all voltage nodes computed by Spice located by bullets. These results show a good qualitative agreement between the two methods even if the number of cells is not large (10 in one direction, which corresponds to \(\varepsilon = 0.1 \)).
1.3.11 Appendices

Basic properties of some integrals on cells

\[\int_{Y} d\epsilon = \epsilon \delta \]

\[\int_{Y} \chi_{Y}(x') dx' = \epsilon \delta_{\mu\lambda} \]
Derivation of the expression of T_E^*

$$(T_Ev, u) = \int_{\Omega} (T_Ev) \cdot u(x) dx$$

$$= \sum_{j=1}^{[E]} \int_{Y_\mu} (T_Ev)_j \cdot u_j(x) dx$$

$$= \sum_{\mu \in \{1, \ldots, m\}} \sum_{j=1}^{[E]} \varepsilon^{-d} \int_{Y_\mu} X_{Y_\mu}^\varepsilon(x) u_j(x) dV_{\mu j}$$

$$= \varepsilon^{-d} \sum_{\mu \in \{1, \ldots, m\}} \sum_{j=1}^{[E]} \int_{Y_\mu} u_j(x) dV_{\mu j}$$

$$[T_E^* u, v] = \varepsilon^{-d} (T_E^* u)^T \cdot v$$

$$= \varepsilon^{-d} \sum_{\mu \in \{1, \ldots, m\}} \sum_{j=1}^{[E]} (T_E^* u)_{\mu j} V_{\mu j}$$

$$\Rightarrow (T_E^* u)_{\mu j} = \varepsilon^{-d} \int_{Y_\mu} u_j(x) dx$$

Proof that $T_E^* T_E = I_E$ on $\mathbb{R}^{[E]}$

Let $u \in \mathbb{R}^{[E]}$ and $\mathcal{J} \sim (\mu, j)$,

$$(T_E^* T_E u)_{\mathcal{J}} = T_E^* \left(\sum_{\lambda \in \{1, \ldots, m\}} U_{\lambda j} X_{Y_\lambda}^\varepsilon(x) \right)$$

$$= \varepsilon^{-d} \int_{Y_\mu} \sum_{\lambda \in \{1, \ldots, m\}} X_{Y_\lambda}^\varepsilon(x) dx U_{\lambda j}$$

$$= \varepsilon^{-d} \varepsilon^d U_{\mu j}$$

$$= u_{\mathcal{J}}$$

Proof that $T_E T_E^*$ is I_E on $P^0(\Omega)^{[E]}$

Let $u \in P^0(\Omega)^{[E]}$,

$$(T_E T_E^* u)_{j}(x) = (T_E (\varepsilon^{-d} \int_{Y_\mu} u_j(x') dx'))_j(x)$$

$$= \sum_{\mu \in \{1, \ldots, m\}} \varepsilon^{-d} \int_{Y_\mu} u_j(x') dx' X_{Y_\mu}^\varepsilon(x)$$

$$= \sum_{\mu \in \{1, \ldots, m\}} \sum_{\lambda \in \{1, \ldots, m\}} \varepsilon^{-d} \int_{Y_\mu} X_{Y_\lambda}^\varepsilon(x') dx' U_{\lambda j} X_{Y_\mu}^\varepsilon(x)$$

$$= \sum_{\mu \in \{1, \ldots, m\}} \sum_{\lambda \in \{1, \ldots, m\}} \delta_{\mu \lambda} U_{\lambda j} X_{Y_\mu}^\varepsilon(x)$$

$$= \sum_{\mu \in \{1, \ldots, m\}} U_{\mu j} X_{Y_\mu}^\varepsilon(x)$$

$$= u_j(x)$$

26
Bibliography

